Material Code ISO 1629
Oil seals are widely used as sealing devices for machines.
JTEKT's oil seals are described in our catalog, Oil Seals & O-Rings.
However, the catalog uses a large number of technical terms and is very long, so many people seem to have trouble handling it.
Therefore, this series of columns will summarize the following in order:
• The structure, functions, and types of oil seals
• How to select the right oil seal
• Handling of seals, and causes and countermeasures for oil seal failure
Common materials used in oil seals include nitrile rubber, fluorine rubber, silicone rubber, acrylic rubber, polyurethane, polytetrafluoroethylene, etc. When selecting the material of the oil seal, the compatibility of the material with the working medium, the adaptability to the working temperature range and the ability of the lip to follow the rotating shaft at high speed must be considered. When the oil seal is working, the temperature of its lip is higher than the working medium temperature by 20~50°C. Attention should be paid when selecting the oil seal material. The working range of the oil seal is related to the material used for the oil seal: the material is nitrile rubber (-40~120°C), Aggreko rubber (ACM) -30~180°C, fluorine rubber (FPM) -25~300°C.
If these criteria are met, damage of the machine can be reduced, the time needed to replace the oil seals when performing repairs can be shortened, and the machine can be used for a longer period of time.
Take extra care with a light alloy block or head. It is vital to avoid scratching the machined surface.
The perfect solution to this is to always use an oil seal that fits properly; the right size of the seal should be used. And in other cases, backup devices should be used to avoid the buildup of clearance gaps within the mating edges.
The versatility of silicone oil seals is another compelling factorThe allowable total eccentricity is the maximum total eccentricity at which the sealing edge can accommodate shaft rotation and retain adequate sealing performance. The oil seal's allowable total eccentricity is affected by the design of the oil seal, the accuracy of the shaft, and the operating conditions.
Wear and oil loss remains two of the most frequent signs of engine seal failure and, if not paid attention to, it can give rise to a breakdown in the vehicle’s system. Regular maintenance and routine oil changes minimize the issues associated with oil seals and potential oil loss.
When selecting auto gaskets and head gaskets, it is essential to prioritize quality, durability, and compatibility with specific vehicle models. High-quality gaskets are designed to withstand the demanding conditions of automotive operation, providing reliable sealing solutions that contribute to the overall performance and safety of the vehicle. Choosing reputable suppliers and manufacturers known for producing high-quality auto gaskets and head gaskets is crucial to ensure the reliability and longevity of these critical components.
Crafted from high-quality materials, the 12x22x5 oil seal boasts a 5% tolerance rate, which is commendable given the intricacies of manufacturing such precise items. This tolerance level speaks volumes about the manufacturer's commitment to quality control, ensuring that each seal meets the stringent demands of industrial applications. In addition to improving fuel efficiency, the A7RTC spark plug also helps to improve the overall performance of your engine
ERIKS type GV (type C according to DIN) is equivalent to type M, but is a heavy-duty version with a double metal casing. This can be a useful solution with larger diameters in more demanding applications. There is also a version of this type with a dust lip; the GVST (type CS according to DIN).
For a more detailed discussion of seal characteristics, please see the following:
Seal characteristics