② Plastics: At present, it is the second largest user of titanium dioxide pigments, accounting for about 20% of the total demand for titanium dioxide. The amount of titanium dioxide used in plastic products will vary with the use requirements, generally between 0.5% and 5%. According to data from the National Bureau of Statistics, the production of plastic products in China increased from 57.81 million tons in 2012 to 81.84 million tons in 2019, with a compound annual growth rate of 5.1%. The amount of titanium dioxide increases accordingly.
In a study published in the journal Toxicology, researchers examined the effects of exposing human colon cancer cell line (HTC116) titanium dioxide food additives in vitro. “In the absence of cytotoxicity, E171 was accumulated in the cells after 24 hours of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization,” the scientists wrote. Researchers removed the additive from the culture, then examined the results 48 hours later. They found, “The removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.”
In recent years, there has been growing interest in the development of novel applications for Chinese anatase titanium dioxide, such as in the field of energy storage and conversion. For example, it has been investigated as a potential electrode material for lithium-ion batteries, due to its high conductivity and stability. Furthermore, its photocatalytic activity has been explored for use in dye-sensitized solar cells, where it can help to improve the efficiency of solar energy conversion.
The process described is seen to consist of preparing separate solutions of readily-soluble salts of zinc and barium together with a third salt, which will further the reaction and at the same time upon uniting the solutions produce by one set of combinations lithopone and a marketable byproduct. This process, moreover, insures the greatest purity of the substances produced and avoids the expense attendant upon more difficult methods in common use. Thisis particularly true with respect to the manufacture of various grades of lithopone, since by properly calculating the amounts of the ingredients used, as above illustrated, any desired quality of lithopone may be produced without mixing additional substances to increase or decrease the percentage of zinc sulfid. The entire product, too, is an absolutely uniform mixture when prepared in accordance with my process.